2 research outputs found

    Spectral Batch Normalization: Normalization in the Frequency Domain

    Full text link
    Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce spectral batch normalization (SBN), a novel effective method to improve generalization by normalizing feature maps in the frequency (spectral) domain. The activations of residual networks without batch normalization (BN) tend to explode exponentially in the depth of the network at initialization. This leads to extremely large feature map norms even though the parameters are relatively small. These explosive dynamics can be very detrimental to learning. BN makes weight decay regularization on the scaling factors γ,β\gamma, \beta approximately equivalent to an additive penalty on the norm of the feature maps, which prevents extremely large feature map norms to a certain degree. However, we show experimentally that, despite the approximate additive penalty of BN, feature maps in deep neural networks (DNNs) tend to explode at the beginning of the network and that feature maps of DNNs contain large values during the whole training. This phenomenon also occurs in a weakened form in non-residual networks. SBN addresses large feature maps by normalizing them in the frequency domain. In our experiments, we empirically show that SBN prevents exploding feature maps at initialization and large feature map values during the training. Moreover, the normalization of feature maps in the frequency domain leads to more uniform distributed frequency components. This discourages the DNNs to rely on single frequency components of feature maps. These, together with other effects of SBN, have a regularizing effect on the training of residual and non-residual networks. We show experimentally that using SBN in addition to standard regularization methods improves the performance of DNNs by a relevant margin, e.g. ResNet50 on ImageNet by 0.71%.Comment: Accepted by The International Joint Conference on Neural Network (IJCNN) 202

    Weight Compander: A Simple Weight Reparameterization for Regularization

    Full text link
    Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce weight compander (WC), a novel effective method to improve generalization by reparameterizing each weight in deep neural networks using a nonlinear function. It is a general, intuitive, cheap and easy to implement method, which can be combined with various other regularization techniques. Large weights in deep neural networks are a sign of a more complex network that is overfitted to the training data. Moreover, regularized networks tend to have a greater range of weights around zero with fewer weights centered at zero. We introduce a weight reparameterization function which is applied to each weight and implicitly reduces overfitting by restricting the magnitude of the weights while forcing them away from zero at the same time. This leads to a more democratic decision-making in the network. Firstly, individual weights cannot have too much influence in the prediction process due to the restriction of their magnitude. Secondly, more weights are used in the prediction process, since they are forced away from zero during the training. This promotes the extraction of more features from the input data and increases the level of weight redundancy, which makes the network less sensitive to statistical differences between training and test data. We extend our method to learn the hyperparameters of the introduced weight reparameterization function. This avoids hyperparameter search and gives the network the opportunity to align the weight reparameterization with the training progress. We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.Comment: Accepted by The International Joint Conference on Neural Network (IJCNN) 202
    corecore